重要提示: 请勿将账号共享给其他人使用,违者账号将被封禁!
查看《购买须知》>>>
找答案首页 > 全部分类 > 大学本科
搜题
网友您好, 请在下方输入框内输入要搜索的题目:
搜题
题目内容 (请给出正确答案)
[主观题]

Software Security 软件安全 We live in a world today where software is pervasive. Software touches

Software Security

软件安全

We live in a world today where software is pervasive. Software touches nearly every aspect of our lives, from software-controlled subways, air traffic control systems, nuclear power plants, and medical equipment to more mundane everyday examples, such as software-controlled microwave ovens, gas burners, elevators, automated teller machines[1], the family car, and the local 911 service[2]. In the past, many of these items relied upon established safety and reliability principles from electrical, mechanical, and/or civil engineering, which developed over several decades, if not longer. Today items like these are controlled by software.

When it is examined, its totality, the magnitude of the software safety and reliability challenge facing us today makes the Y2K[3]problem look minuscule by comparison. Hence, it is time to acknowledge the discipline of software safety and reliability and its importance to everyday life. Some people and organizations are starting to understand and respond to this challenge. For example, the FBI[4]recently established a National Infrastructure Protection Center to protect safety-critical systems and software. Unfortunately, many still remain blissfully unaware of the situation or deny its existence. Contributing to the problem is the small number of universities that offer courses in software safety and reliability.

We hear a lot about the global economy today. Technology has less respect for state or national borders than do market forces. The software safety and reliability challenge is a global challenge. Products, such as cars and medical devices, are built in one jurisdiction and sold worldwide. Air traffic control systems must interoperate safely and reliably among multiple countries, for example along the long borders between the U. S. , Canada, and Mexico. Accordingly, the first part of this book introduces the concept of software safety and reliability, and techniques and approaches used to achieve and assess it.

Background

The inherent complexity of software—its design, development, assessment, and use—is and has been increasing rapidly during the last decade. The cycle time between new versions of system and application software has decreased from a number of years to a number of months. The evolution and discovery of new design techniques and development methodologies are proceeding at an equally rapid pace. Consequently, the debate about what constitutes the standard body of knowledge for Computer Science professionals continues.

Accompanying this is the ever broadening role that software plays in electronic products. A study performed in the U. K. in 1990 estimated that the market for the development of safety-related software was $. 85B per year and that it was growing at a rate of 20 percent per year. This is due to the fact that software is replacing discrete hardware logic in many devices. Some common examples include air traffic control systems, nuclear power plant control systems, and radiation therapy systems. In addition, advanced electronics with embedded software controllers are being incorporated into a variety of new products, such as laser surgical devices, automobiles, subways, and intelligent transportation systems.

As such the role of software has moved from simply generating financial or other mathematical data to monitoring and controlling equipment, which directly affects human life and safety. In fact, it was reported by Donald Mackenzie that "the total number of people killed by computer system failures, worldwide, up to the end of 1998 is between 1,000 and 3,000. "

As a result, a more thorough and widespread understanding of, and familiarity with the specialized techniques to achieve and assess the safety and reliability of software, are needed in academia, industry, and government. This is also true since many legal issues related to software liability are evolving.

Purpose

While the general concept of safety and reliability is understood by most parties, the specialty of software safety and reliability is not. The understanding of electronic component reliability and electrical safety has been evolving since the 1940s. In contrast, software safety and reliability is a relatively new discipline that only a few understand well or at all. Hence, the overall goal of writing this book is to improve the state of the art of software safety and reliability, both its understanding and practice. This goal is achieved through three objectives.

The first objective of this book is to serve as a "consciousness raising"[5]about the importance of software safety and reliability and the attention this subject warrants in mission critical systems[6]. As more and more functionality is shifted from hardware to software, two common scenarios occur. First, managers and technical personnel involved in mission critical projects are generally very knowledgeable about optics, radiation physics, mechanical engineering, and so forth. However, they are sometimes at a loss when it comes to knowing: 1) what to do about software safety and reliability; 2) the skill set that is needed to adequately address software safety and reliability; and 3) sometimes even that this subject warrants serious attention. Second, today there are many excellent Computer Science and Software Engineering programs at universities throughout the worlD. Unfortunately, very few of them offer any courses on software safety and reliability or on software engineering standards. A student may acquire a thorough background in software engineering without being exposed to the field of software safety and reliability. Given the shift in technology to software controlled products, this is unfortunate because today's students will be tomorrow's safety and reliability practitioners. This book has been written to serve as a "consciousness raising" for both scenarios. As such, it includes many illustrative everyday examples about the importance of software safety and reliability.

The second objective of this book is to provide practical information about the current methods used to achieve and assess software safety and reliability. This is accomplished by a comprehensive discussion of the current approaches promoted by key industrial sectors and standards organizations to software safety and reliability. Since most practitioners were not taught software safety and reliability in school, it is all the more imperative that they be made aware of current software safety and reliability standards[7]. As a rule, standards are written in a very terse style. A phrase or sentence may be very meaningful to the committee members who spent years writing the standard, but the same phrase leaves the average reader in the dark. Accordingly, Parts Ⅱ and Ⅲ of this book have been written in the style of an application guide—" how to" read, interpret, and implement a given standarD. While theory is not entirely neglected, the emphasis is on practical information.

The third and final objective of this book is to bring together, for the first time, in one volume the contemporary thinking on software safety and reliability so that it can be compared and analyzed; thereby leading to the improved understanding and practice of this field in the future.

Firewall

Nations without controlled borders cannot ensure the security and safety of their citizens, nor can they prevent piracy and theft. Networks without controlled access cannot ensure the security or privacy of stored data, nor can they keep network resources from being exploited by hackers.

The communication efficiency provided by the Internet has caused a rush to attach private networks directly to it. Direct Internet connections make it easy for hackers to exploit private network resources. Prior to the Internet, the only widely available way for a hacker to connect from home to a private network was direct dialing with modems and the public telephone network. Remote access security was a relatively small issue.

When you connect our private network to the Internet, you are actually connecting your network directly to everv other network attached to the Internet. There's no inherent central point of security control.

Firewalls are used to create security checkpoints at the boundaries of private networks. By providing the routing function between the private network and the Internet, firewalls inspect all communications passing between the two networks and either pass or drop the communications depending on how they match the programmed policy rules. If your firewall is properly configured and contains no serious exploitable bugs, your network will be as free from risk as possible.

Firewalls are among the newest developments in Internet technology. Developed from rudimentary security systems that major computer vendors like Compact and IBM developed to secure their own networks in the mid 1980s, these network sentinels have developed in lock-step with the burgeoning threat of information warfare. The most interesting and innovative developments, like Network Address Translation and multi-layer security filtering, are so new that books just two years old are already obsolete.

The security problems of the past could be solved with simple packet filters and dial- back modem banks. The security problems of the future will require rifling through and validating every byte of an Internet message, requiring encrypted certification of a web site's true identity before connecting, and then encrypting nearly everything that travels between. Fortunately, as technology and the technological society it mirrors progress, these measures will become simple and invisible. As vendors make operating systems more hardened against attack, the World Wide Web will secretly grow more secure for people who will freely surf the Web as they please, hampered only by the occasionally warning that a site is not accredited or that a message contains suspicious content. This is as it should be.

The security problems of today are most effectively solved with firewalls and virtual private tunnels. Peripheral security utilities[8]like intrusion detectors and security scanners do their part to alarm and alert, but firewalls will remain the foundation of Internet security until their functionality is built into the very protocols upon which the Internet operates and until every Internet-connected computer contains the equivalent of a firewall. Even then, centralized management of Internet policy may make firewalls a permanent addition to corporate networking.

Notes

[1]automated teller machines:自动取款机,简写成ATM。

[2]911 service:在美国等一些西方国家,紧急救护号码为9ll。

[3]Y2K(Year 2000):电脑千年虫。

[4]the FBI:(美国)联邦调查局(Federal Bureau of Investigation)的缩写。

[5]consciousness raising:提高意识。

[6]mission critical systems:任务是至关重要的系统。

[7]It is...从句中用should+do,should常可省,如:It is important that he start early tomorrow.

[8] Peripheral security utilities: 外围(部)安全设备。

Choose the best answer:

查看答案
更多“Software Security 软件安全 We live in a world today where software is pervasive. Software touches”相关的问题

第1题

方差分析中,总变差恶意分解为组内变差和组间变差,其中组间变差表示()。

A.一个样本观测值与均值的差方和

B.全部样本观测值与总体均值的差方

C.各样本观测值与各自均值的差方和

D.各样本均值与总均值的差方和

点击查看答案

第2题

对两变量的散点图拟合最好的回归线必须满足一个基本条件是:()A因变量的各个观察值与拟合值差

对两变量的散点图拟合最好的回归线必须满足一个基本条件是:()

A因变量的各个观察值与拟合值差的和为最大;

B因变量的各个观察值与拟合值差的和为最小;

C因变量的各个观察值与拟合值差的平方和为最大;

D因变量的各个观察值与拟合值差的平方和为最小。

点击查看答案

第3题

某样本有n个观察值,其样本均值nx和样本标准差sn都大于零,如今又获得第n+1个观察值,它恰好等于nx。则由n+1个观察值算得的样本均值1+nx和样本标准差与原1+nsnx,sn之间有()成立。

A.nx=1+nx

B. nx≠1+nx

C. sn>

D. s1+nsn<>

点击查看答案

第4题

一样本由n个观察值组成,样本均值x和样本标准差S都大于零,如果其中一个观察值等于样本均值x,现把该观察值从样本中删去。则以下正确的是()。

A.A.x和S都变化

B.B.x和S都不变

C.C.x不变,S增加

D.D.x不变,S减少

点击查看答案

第5题

观察值与估计值之间的偏差均值称为估算标准差,也称剩余标准差,记作SY。()
点击查看答案
下载上学吧APP
客服
TOP
重置密码
账号:
旧密码:
新密码:
确认密码:
确认修改
购买搜题卡查看答案
购买前请仔细阅读《购买须知》
请选择支付方式
微信支付
支付宝支付
选择优惠券
优惠券
请选择
点击支付即表示你同意并接受《服务协议》《购买须知》
立即支付
搜题卡使用说明

1. 搜题次数扣减规则:

功能 扣减规则
基础费
(查看答案)
加收费
(AI功能)
文字搜题、查看答案 1/每题 0/每次
语音搜题、查看答案 1/每题 2/每次
单题拍照识别、查看答案 1/每题 2/每次
整页拍照识别、查看答案 1/每题 5/每次

备注:网站、APP、小程序均支持文字搜题、查看答案;语音搜题、单题拍照识别、整页拍照识别仅APP、小程序支持。

2. 使用语音搜索、拍照搜索等AI功能需安装APP(或打开微信小程序)。

3. 搜题卡过期将作废,不支持退款,请在有效期内使用完毕。

请使用微信扫码支付(元)
订单号:
遇到问题请联系在线客服
请不要关闭本页面,支付完成后请点击【支付完成】按钮
遇到问题请联系在线客服
恭喜您,购买搜题卡成功 系统为您生成的账号密码如下:
重要提示: 请勿将账号共享给其他人使用,违者账号将被封禁。
发送账号到微信 保存账号查看答案
怕账号密码记不住?建议关注微信公众号绑定微信,开通微信扫码登录功能
警告:系统检测到您的账号存在安全风险

为了保护您的账号安全,请在“上学吧”公众号进行验证,点击“官网服务”-“账号验证”后输入验证码“”完成验证,验证成功后方可继续查看答案!

- 微信扫码关注上学吧 -
警告:系统检测到您的账号存在安全风险
抱歉,您的账号因涉嫌违反上学吧购买须知被冻结。您可在“上学吧”微信公众号中的“官网服务”-“账号解封申请”申请解封,或联系客服
- 微信扫码关注上学吧 -
请用微信扫码测试
选择优惠券
确认选择
谢谢您的反馈

您认为本题答案有误,我们将认真、仔细核查,如果您知道正确答案,欢迎您来纠错

上学吧找答案